Brief Communication

Quantization of bounded domains

Andrea Loi ${ }^{1}$
University of Warwick, Coventry CV4 7AL, UK

Received 17 March 1998; received in revised form 29 June 1998

Abstract

We consider the quantization of a complex manifold endowed with the Bergman form following the ideas of Cahen, Gutt and Rawnsley. In particular we give a geometric interpretation for the quantization to be regular in terms of the Hilbert space of square integrable holomorphic n-forms on M and the Hilbert space of holomorphic n-forms on M bounded with respect to the Liouville element. © 1999 Published by Elsevier Science B.V. All rights reserved.

Subj. Class.: Quantum mechanics
1991 MSC: 53C55; 58F06
Keywords: Kähler metrics; Quantization

1. Preliminaries

A geometric quantization of a Kähler manifold (M, ω) is a pair (L, h), where L is a holomorphic line bundle over M and h is a hermitian structure on L such that $\operatorname{curv}(L, h)=$ $-2 \pi \mathrm{i} \omega$. The curvature $\operatorname{curv}(L, h)$ is calculated with respect to the Chern connection. If $\sigma: U \rightarrow L^{+}$is a trivializing holomorphic section (where L^{+}denotes the complement of the zero section in L) then the following formula holds:

$$
\begin{equation*}
\operatorname{curv}(L, h)=-\partial \bar{\partial} \log h(\sigma(x), \sigma(x)) \tag{1}
\end{equation*}
$$

Let $\left(s_{0}, \ldots, s_{N}\right)(N \leq \infty)$ be a unitary basis of the scparable complex Hilbert space \mathcal{H}_{h} of all global holomorphic sections s of L, which are bounded with respect to the Liouville element defined by

[^0]$$
\langle s, s\rangle_{h}=\|s\|_{h}^{2}=\int_{M} h(s(x), s(x)) \frac{\omega^{n}(x)}{n!}
$$
(see [2-5]). Define the smooth function on M by
\[

$$
\begin{equation*}
\epsilon_{(L, h)}(x)=\sum_{j=0}^{N} h\left(s_{j}(x), s_{j}(x)\right) \tag{2}
\end{equation*}
$$

\]

Assuming that for all $x \in M$ there exists $s \in \mathcal{H}_{h}$ such that $s(x)$ is different from zero one can define the map

$$
\begin{equation*}
\phi_{\sigma}: U \rightarrow \mathbb{C}^{N+1} \backslash\{0\}: x \mapsto\left(\frac{s_{0}(x)}{\sigma(x)}, \ldots, \frac{s_{N}(x)}{\sigma(x)}\right) \tag{3}
\end{equation*}
$$

where $\sigma: U \rightarrow L^{+}$is a trivializing holomorphic section on an open set $U \subset M$. It follows easily that (3) is the local expression of a globally defined map $\phi_{(L, h)}: M \rightarrow \mathbb{P}^{N}(\mathbb{C})$. This is called the coherent states map.

Theorem 1 [2]. The coherent states map is full, i.e. $\phi(M)$ is not contained in $\mathbb{P}^{r}(\mathbb{C})$ with $r<N$. Furthermore

$$
\begin{equation*}
\phi_{(L, h)}^{*} \Omega_{F S}^{N}=\omega+\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \log \epsilon_{(L, h)} \tag{4}
\end{equation*}
$$

Corollary 1. Let (L, h) be a quantization of a Kähler manifold (M, ω). If $\epsilon_{(L, h)}$ is a positive constant, then ω is projectively induced.

Recall that a Kähler form ω on a complex manifold M is projectively induced if there exists $N \leq \infty$ and a holomorphic map

$$
\phi: M \rightarrow \mathbb{P}^{N}(\mathbb{C})
$$

such that

$$
\begin{equation*}
\phi^{*} \Omega_{F S}^{N}=\omega \tag{5}
\end{equation*}
$$

In the proof of Theorem 3 we need
Theorem 2 (cf. [6]). Let $N, N^{\prime} \leq \infty$. Let M be a complex manifold, $\phi: M \rightarrow \mathbb{P}^{N}(\mathbb{C})$ and $\psi: M \rightarrow \mathbb{P}^{N^{\prime}}(\mathbb{C})$ full holomorphic maps such that $\phi^{*} \Omega_{F S}^{N}=\psi^{*} \Omega_{F S}^{N^{\prime}}$ is a Kähler form on M. Then $N=N^{\prime}$ and there exists a unitary transformation U of $\mathbb{P}^{N}(\mathbb{C})$ such that $\phi=U \circ \psi$.

2. The results

Let M be an n-dimensional complex manifold and K its canonical bundle. If α is a holomorphic section of K, i.e. a holomorphic n-form on M then in a complex coordinate
system U, endowed with local coordinates $\left(z_{1}, \ldots, z_{n}\right)$, there exists a holomorphic function f_{α} such that

$$
\begin{equation*}
\alpha(z)=f_{\alpha}(z) \mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{n} \quad \forall z \in U \tag{6}
\end{equation*}
$$

Let $\left(\alpha_{0}, \ldots, \alpha_{N^{\prime}}\right)\left(N^{\prime} \leq \infty\right)$ be a unitary basis for the separable complex Hilbert space $(\mathcal{F},(\cdot, \cdot))$ of all holomorphic n-forms α bounded with respect to $\|\alpha\|^{2}=(\alpha, \alpha):=$ $\left(\mathrm{i}^{n} / 2^{n}\right) \int_{M} \alpha \wedge \bar{\alpha}$. Let K^{*} be the smooth function on U given by

$$
\begin{equation*}
K^{*}(z, \bar{z})=\sum_{j=0}^{N^{\prime}} f_{\alpha_{j}}(z) \bar{f}_{\alpha_{j}}(z) \tag{7}
\end{equation*}
$$

The expression $\partial \bar{\partial} \log K^{*}$ does not depend on the coordinates. Hence $\omega_{B}=(i / 2 \pi) \partial \bar{\partial} \log K^{*}$ is a globally defined two-form on M. In the sequei we wiil suppose ω_{B} is a Kähler form . For example this happens for the bounded domains in \mathbb{C}^{N} (see [7] for details).

Formula

$$
\begin{equation*}
h(\alpha, \alpha):=\frac{\left|f_{\alpha}\right|^{2}}{K^{*}} \quad \forall \alpha \in H^{0}(K) \tag{8}
\end{equation*}
$$

defines a hermitian structure on K and it is immediate to verify that the pair (K, h) is a geometric quantization for $\left(M, \omega_{B}\right)$.

Furthermore it follows from (2) that

$$
\begin{equation*}
\epsilon_{(K, h)}=\sum_{j=0}^{N}\left|f_{s_{j}}\right|^{2} / K^{*} \tag{9}
\end{equation*}
$$

where $s_{j}=f_{s_{j}} \mathrm{~d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{n}, j=0, \ldots, N$, is a unitary basis for $\left(\mathcal{H}_{h},\langle\cdot, \cdot\rangle_{h}\right)$.
Theorem 3. Let M be a complex manifold such that ω_{B} is a Kähler form. Then $\epsilon_{(K, h)}$ equals a positive constant λ if and only if the following conditions are satisified:
(i) the complex dimension of \mathcal{F} is equal to the complex dimension of \mathcal{H}_{h};
(ii) $(\cdot, \cdot)=\lambda\langle\cdot, \cdot\rangle_{h}$.

Proof. Suppose that $\operatorname{dim} \mathcal{H}_{h}=\operatorname{dim} \mathcal{F}=N+1$ and $\langle\cdot, \cdot\rangle_{h}=\lambda(\cdot, \cdot)$. Let α_{j} and s_{j}, $j=0,1, \ldots N$, be unitary bases for $(\mathcal{F},(\cdot, \cdot))$ and $\left(\mathcal{H}_{h},(\cdot, \cdot\rangle_{h}\right)$, respectively. Then there exist an $(N+1) \times(N+1)$ unitary matrix $u_{j k}$ and a complex number C such that

$$
\begin{equation*}
f_{s_{j}}=C \sum_{k-0}^{N} u_{j k} f_{\alpha_{k}}, \quad j=0, \ldots, N \tag{10}
\end{equation*}
$$

and $|C|^{2}=\lambda$. Hence, by (9),

$$
\epsilon_{(K, h)}=\sum_{j=0}^{N}\left|f_{s_{j}}\right|^{2} / K^{*}=\sum_{j=0}^{N}\left|f_{s_{j}}\right|^{2} / \sum_{j=0}^{N}\left|f_{\alpha_{j}}\right|^{2}=\lambda
$$

Conversely, suppose that $\epsilon_{(K, h)}=\lambda$ and let $N+1$ be the dimension of \mathcal{H}_{h}. By Theorem 1 the coherent states map

$$
\phi_{(L, h)}: M \rightarrow \mathbb{P}^{N}(\mathbb{C}): x \mapsto\left[\left(f_{s_{0}}(x), \ldots, f_{s_{N}}(x)\right)\right]
$$

is a full holomorphic map and $\phi_{(L, h)}^{*} \Omega_{F S}^{N}=\omega_{B}$. On the other hand ω_{B} is projectively induced via the full holomorphic map

$$
j: M \rightarrow \mathbb{P}^{N^{\prime}}(\mathbb{C}): x \mapsto\left[\left(f_{\alpha_{0}}(x), \ldots, f_{\alpha_{N^{\prime}}}(x)\right)\right]
$$

(see [7] for details). By Theorem $2 N=N^{\prime}$, i.e. $\operatorname{dim} \mathcal{H}_{h}=\operatorname{dim} \mathcal{F}=N+1$. Moreover, there exist an $(N+1) \times(N+1)$ unitary matrix $u_{j k}$ and a complex number C such that (10) holds, i.e. $(\cdot, \cdot)=|C|^{2}(\cdot, \cdot\rangle_{h}$. and, by the proof of the first part, $|C|^{2}=\lambda$.

Theorem 4. Let M be a simply connected complex manifold such that ω_{B} is KählerEinstein with scalar curvature -1 and $\epsilon_{(K, h)}$ is a positive constant, say λ. Then $K^{*}=$ $\lambda \operatorname{det}\left(g_{j \vec{k}}\right)$ (see [7, p.274] for a discussion of this condition).

Proof. Let $\omega_{B}=(\mathrm{i} / 2) \sum_{i, \bar{k}=1}^{n} g_{j \bar{k}} \mathrm{~d} z_{j} \wedge \mathrm{~d} \overline{z_{\bar{k}}}$ be the expression of the Bergman form in local coordinates $\left(z_{1}, \ldots, z_{n}\right)$. If ω_{B} is Kähler-Einstein then

$$
\begin{equation*}
\omega_{B}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \log K^{*}=\frac{\mathrm{i}}{2 \pi} \partial \bar{\partial} \log \operatorname{det}\left(g_{j \bar{k}}\right)=-\rho_{\omega_{B}}, \tag{11}
\end{equation*}
$$

where $\rho_{\omega_{B}}$ is the Ricci form on M (see [1])
This is equivalent to $\partial \bar{\partial} \log \left\{K^{*} / \operatorname{det}\left(g_{j \bar{k}}\right)\right\}=0$. It follows from the simply connectness of M that there exists a holomorphic function k on M such that $K^{*} / \operatorname{det}\left(g_{j \bar{k}}\right)=\mathrm{e}^{\Re(k)}$.

Since $\epsilon_{(K, h)}$ is constant if follows from Theorem 3 that $\operatorname{dim} \mathcal{H}_{h}=\operatorname{dim} \mathcal{F}=N+1$. Then it is not hard to see that $s_{j}:=\mathrm{e}^{k / 2} \alpha_{j}$ is a unitary basis for $\left(\mathcal{H}_{h},\langle\cdot, \cdot\rangle_{h}\right)$, where $\left(\alpha_{0}, \ldots, \alpha_{N}\right)$ is a unitary basis for $(\mathcal{F},(\cdot, \cdot))$. By formula (9) and by hypothesis $\epsilon_{(K, h)}=\mathrm{e}^{\Re(k)}=\lambda$.

References

[1] Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi, Séminaire Palaiseau, Astèrisque 58, 1978.
[2] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds I: Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62.
[3] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds II, Trans. Amer. Math. Soc. 337 (1993) 73-98.
[4] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds III, Lett. Math. Phys. 30 (1994) 291-305.
[5] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds IV, Lett. Math. Phys. 34 (1995) 159-168.
[6] E. Calabi, Isometric imbeddings of complex manifolds, Ann. Math. 58 (1953) 1-23.
[7] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1996) 267-290.

[^0]: ${ }^{1}$ E-mail: loi@vaxcal.unica.it

