

GEOMETRY AND PHYSICS

Journal of Geometry and Physics 29 (1999) 1-4

Brief Communication

Quantization of bounded domains

Andrea Loi¹

University of Warwick, Coventry CV4 7AL, UK

Received 17 March 1998; received in revised form 29 June 1998

Abstract

We consider the quantization of a complex manifold endowed with the Bergman form following the ideas of Cahen, Gutt and Rawnsley. In particular we give a geometric interpretation for the quantization to be regular in terms of the Hilbert space of square integrable holomorphic *n*-forms on M and the Hilbert space of holomorphic *n*-forms on M bounded with respect to the Liouville element. © 1999 Published by Elsevier Science B.V. All rights reserved.

Subj. Class.: Quantum mechanics 1991 MSC: 53C55; 58F06 Keywords: Kähler metrics; Quantization

1. Preliminaries

A geometric quantization of a Kähler manifold (M, ω) is a pair (L, h), where L is a holomorphic line bundle over M and h is a hermitian structure on L such that $\operatorname{curv}(L, h) = -2\pi i \omega$. The curvature $\operatorname{curv}(L, h)$ is calculated with respect to the *Chern connection*. If $\sigma: U \to L^+$ is a trivializing *holomorphic* section (where L^+ denotes the complement of the zero section in L) then the following formula holds:

$$\operatorname{curv}(L,h) = -\partial\bar{\partial}\log h(\sigma(x),\sigma(x)). \tag{1}$$

Let (s_0, \ldots, s_N) $(N \le \infty)$ be a unitary basis of the separable complex Hilbert space \mathcal{H}_h of all global holomorphic sections s of L, which are bounded with respect to the Liouville element defined by

¹ E-mail: loi@vaxca1.unica.it

^{0393-0440/99/\$ –} see front matter © 1999 Published by Elsevier Science B.V. All rights reserved PII \$0393-0440(98)00035-7

$$\langle s, s \rangle_h = \|s\|_h^2 = \int_M h(s(x), s(x)) \frac{\omega^n(x)}{n!}$$

(see [2-5]). Define the smooth function on M by

$$\epsilon_{(L,h)}(x) = \sum_{j=0}^{N} h(s_j(x), s_j(x)).$$
(2)

Assuming that for all $x \in M$ there exists $s \in \mathcal{H}_h$ such that s(x) is different from zero one can define the map

$$\phi_{\sigma}: U \to \mathbb{C}^{N+1} \setminus \{0\}: x \mapsto \left(\frac{s_0(x)}{\sigma(x)}, \dots, \frac{s_N(x)}{\sigma(x)}\right), \tag{3}$$

where $\sigma: U \to L^+$ is a trivializing holomorphic section on an open set $U \subset M$. It follows easily that (3) is the local expression of a globally defined map $\phi_{(L,h)}: M \to \mathbb{P}^N(\mathbb{C})$. This is called the *coherent states map*.

Theorem 1 [2]. The coherent states map is full, i.e. $\phi(M)$ is not contained in $\mathbb{P}^r(\mathbb{C})$ with r < N. Furthermore

$$\phi_{(L,h)}^* \Omega_{FS}^N = \omega + \frac{i}{2\pi} \partial \bar{\partial} \log \epsilon_{(L,h)}.$$
(4)

Corollary 1. Let (L, h) be a quantization of a Kähler manifold (M, ω) . If $\epsilon_{(L,h)}$ is a positive constant, then ω is projectively induced.

Recall that a Kähler form ω on a complex manifold M is projectively induced if there exists $N \leq \infty$ and a holomorphic map

$$\phi: M \to \mathbb{P}^N(\mathbb{C})$$

such that

$$\phi^* \Omega^N_{FS} = \omega. \tag{5}$$

In the proof of Theorem 3 we need

Theorem 2 (cf. [6]). Let $N, N' \leq \infty$. Let M be a complex manifold, $\phi : M \to \mathbb{P}^N(\mathbb{C})$ and $\psi : M \to \mathbb{P}^{N'}(\mathbb{C})$ full holomorphic maps such that $\phi^* \Omega_{FS}^N = \psi^* \Omega_{FS}^{N'}$ is a Kähler form on M. Then N = N' and there exists a unitary transformation U of $\mathbb{P}^N(\mathbb{C})$ such that $\phi = U \circ \psi$.

2. The results

Let M be an n-dimensional complex manifold and K its canonical bundle. If α is a holomorphic section of K, i.e. a holomorphic n-form on M then in a complex coordinate

system U, endowed with local coordinates (z_1, \ldots, z_n) , there exists a holomorphic function f_{α} such that

$$\alpha(z) = f_{\alpha}(z) \, \mathrm{d} z_1 \wedge \dots \wedge \, \mathrm{d} z_n \quad \forall z \in U.$$
(6)

Let $(\alpha_0, \ldots, \alpha_{N'})$ $(N' \leq \infty)$ be a unitary basis for the separable complex Hilbert space $(\mathcal{F}, (\cdot, \cdot))$ of all holomorphic *n*-forms α bounded with respect to $\|\alpha\|^2 = (\alpha, \alpha) := (i^n/2^n) \int_M \alpha \wedge \bar{\alpha}$. Let K^* be the smooth function on U given by

$$K^{*}(z,\bar{z}) = \sum_{j=0}^{N'} f_{\alpha_{j}}(z) \bar{f}_{\alpha_{j}}(z).$$
⁽⁷⁾

The expression $\partial \bar{\partial} \log K^*$ does not depend on the coordinates. Hence $\omega_B = (i/2\pi)\partial \bar{\partial} \log K^*$ is a globally defined two-form on M. In the sequel we will suppose ω_B is a Kähler form. For example this happens for the bounded domains in \mathbb{C}^N (see [7] for details).

Formula

$$h(\alpha, \alpha) := \frac{|f_{\alpha}|^2}{K^*} \quad \forall \alpha \in H^0(K)$$
(8)

defines a hermitian structure on K and it is immediate to verify that the pair (K, h) is a geometric quantization for (M, ω_B) .

Furthermore it follows from (2) that

$$\epsilon_{(K,h)} = \sum_{j=0}^{N} |f_{s_j}|^2 / K^*, \tag{9}$$

where $s_j = f_{s_j} dz_1 \wedge \cdots \wedge dz_n$, $j = 0, \dots, N$, is a unitary basis for $(\mathcal{H}_h, \langle \cdot, \cdot \rangle_h)$.

Theorem 3. Let M be a complex manifold such that ω_B is a Kähler form. Then $\epsilon_{(K,h)}$ equals a positive constant λ if and only if the following conditions are satisified: (i) the complex dimension of \mathcal{F} is equal to the complex dimension of \mathcal{H}_h ; (ii) $(\cdot, \cdot) = \lambda \langle \cdot, \cdot \rangle_h$.

Proof. Suppose that dim $\mathcal{H}_h = \dim \mathcal{F} = N + 1$ and $\langle \cdot, \cdot \rangle_h = \lambda(\cdot, \cdot)$. Let α_j and s_j , $j = 0, 1, \ldots, N$, be unitary bases for $(\mathcal{F}, (\cdot, \cdot))$ and $(\mathcal{H}_h, \langle \cdot, \cdot \rangle_h)$, respectively. Then there exist an $(N + 1) \times (N + 1)$ unitary matrix u_{jk} and a complex number C such that

$$f_{s_j} = C \sum_{k=0}^{N} u_{jk} f_{\alpha_k}, \quad j = 0, \dots, N,$$
 (10)

and $|C|^2 = \lambda$. Hence, by (9),

$$\epsilon_{(K,h)} = \sum_{j=0}^{N} |f_{s_j}|^2 / K^* = \sum_{j=0}^{N} |f_{s_j}|^2 / \sum_{j=0}^{N} |f_{\alpha_j}|^2 = \lambda.$$

Conversely, suppose that $\epsilon_{(K,h)} = \lambda$ and let N + 1 be the dimension of \mathcal{H}_h . By Theorem 1 the coherent states map

$$\phi_{(L,h)}: M \to \mathbb{P}^{N}(\mathbb{C}): x \mapsto [(f_{s_0}(x), \dots, f_{s_N}(x))]$$

3.7

is a full holomorphic map and $\phi_{(L,h)}^* \Omega_{FS}^N = \omega_B$. On the other hand ω_B is projectively induced via the full holomorphic map

$$j: M \to \mathbb{P}^{N'}(\mathbb{C}): x \mapsto [(f_{\alpha_0}(x), \ldots, f_{\alpha_{N'}}(x))].$$

(see [7] for details). By Theorem 2 N = N', i.e. dim $\mathcal{H}_h = \dim \mathcal{F} = N + 1$. Moreover, there exist an $(N + 1) \times (N + 1)$ unitary matrix u_{jk} and a complex number C such that (10) holds, i.e. $(\cdot, \cdot) = |C|^2 \langle \cdot, \cdot \rangle_h$. and, by the proof of the first part, $|C|^2 = \lambda$.

Theorem 4. Let *M* be a simply connected complex manifold such that ω_B is Kähler– Einstein with scalar curvature -1 and $\epsilon_{(K,h)}$ is a positive constant, say λ . Then $K^* = \lambda \det(g_{i\bar{k}})$ (see [7, p.274] for a discussion of this condition).

Proof. Let $\omega_B = (i/2) \sum_{j,\bar{k}=1}^n g_{j\bar{k}} dz_j \wedge d\bar{z}_{\bar{k}}$ be the expression of the Bergman form in local coordinates (z_1, \ldots, z_n) . If ω_B is Kähler–Einstein then

$$\omega_B = \frac{i}{2\pi} \partial \bar{\partial} \log K^* = \frac{i}{2\pi} \partial \bar{\partial} \log \det(g_{j\bar{k}}) = -\rho_{\omega_B}, \qquad (11)$$

where ρ_{ω_R} is the Ricci form on *M* (see [1])

This is equivalent to $\partial \bar{\partial} \log\{K^*/\det(g_{j\bar{k}})\} = 0$. It follows from the simply connectness of M that there exists a holomorphic function k on M such that $K^*/\det(g_{j\bar{k}}) = e^{\Re(k)}$.

Since $\epsilon_{(K,h)}$ is constant if follows from Theorem 3 that dim $\mathcal{H}_h = \dim \check{\mathcal{F}} = N + 1$. Then it is not hard to see that $s_j := e^{k/2} \alpha_j$ is a unitary basis for $(\mathcal{H}_h, \langle \cdot, \cdot \rangle_h)$, where $(\alpha_0, \ldots, \alpha_N)$ is a unitary basis for $(\mathcal{F}, (\cdot, \cdot))$. By formula (9) and by hypothesis $\epsilon_{(K,h)} = e^{\Re(k)} = \lambda$. \Box

References

- Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi, Séminaire Palaiseau, Astèrisque 58, 1978.
- [2] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds I: Geometric interpretation of Berezin's quantization, J. Geom. Phys. 7 (1990) 45-62.
- [3] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds II, Trans. Amer. Math. Soc. 337 (1993) 73–98.
- [4] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds III, Lett. Math. Phys. 30 (1994) 291-305.
- [5] M. Cahen, S. Gutt, J.H. Rawnsley, Quantization of Kähler manifolds IV, Lett. Math. Phys. 34 (1995) 159-168.
- [6] E. Calabi, Isometric imbeddings of complex manifolds, Ann. Math. 58 (1953) 1-23.
- [7] S. Kobayashi, Geometry of bounded domains, Trans. Amer. Math. Soc. 92 (1996) 267-290.